福田のわかった数学〜高校2年生013〜直線の方程式 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生013〜直線の方程式

問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
3直線$\left\{
\begin{array}{1}
a_1x+b_1y=1\\
a_2x+b_2y=1\\
a_3x+b_3y=1
\end{array}
\right.$
 が1点で交わるとき、
3点$(a_1,b_1),(a_2,b_2),(a_3,b_3)$は一直線上にあることを示せ。
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
3直線$\left\{
\begin{array}{1}
a_1x+b_1y=1\\
a_2x+b_2y=1\\
a_3x+b_3y=1
\end{array}
\right.$
 が1点で交わるとき、
3点$(a_1,b_1),(a_2,b_2),(a_3,b_3)$は一直線上にあることを示せ。
投稿日:2021.05.02

<関連動画>

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(3)直線群の基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(3+2k)x+(4-k)y+5-3k=0$ は定数$k$の値にかかわら定点を通る。
この定点の座標を求めよ。

${\Large\boxed{2}}$ $2$直線$\ 2x-3y+5=0$ $\cdots$① $x+2y-6=0$ $\cdots$②の交点を通る直線
のうち次の条件を満たす直線の方程式を求めよ。
(1)点(-1,2)を通る
(2)直線$\ x+3y+7=0$ $\cdots$③と平行
(3)直線$\ 2x-y+7=0$ $\cdots$④と垂直
この動画を見る 

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 

0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ xy平面上の放物線P:y^2=4x上に異なる2点A,Bをとり、A,Bそれぞれに\\
おいてPへの接線と直交する直線をn_A,\ n_Bとする。aを正の数として、点Aの座標\\
を(a,\ \sqrt{4a})とするとき、以下の各問いに答えよ。\\
(1)\ n_Aの方程式を求めよ。\\
(2)直線ABと直線y=\sqrt{4a}とがなす角の2等分線の一つが、n_Aに一致する\\
とき、直線ABの方程式をaを用いて表せ。\\
(3)(2)のとき、点Bを通る直線r_Bを考える。r_Bと直線ABとがなす角の\\
2等分線の一つが、n_Bに一致するとき、r_Bの方程式をaを用いて表せ。\\
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
y=\sqrt{4a}、直線x=-1および(3)のr_Bで囲まれた図形の面積をS_2とする。\\
aを変化させたとき、\frac{S_1}{S_2}の最大値を求めよ。
\end{eqnarray}

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP