室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
投稿日:2018.11.04

<関連動画>

Σ立法の和の公式を視覚的に

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^3+2^3+\cdots+n^3=\{ \frac{n(n+1)}{2} \}^2$
$1^2+2^2+3^2+\cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

九州大 Σの公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
この動画を見る 
PAGE TOP