福田の1.5倍速演習〜合格する重要問題031〜千葉大学2016年度理系第2問〜格子点の個数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題031〜千葉大学2016年度理系第2問〜格子点の個数

問題文全文(内容文):
座標平面上に5点O$(0,0), A(5,0), B(0,11), P(m,0), Q(0,n)$をとる。
ただし、mとnは$1 \leqq m \leqq 5,1 \leqq n \leqq 11$を満たす整数とする。
(1)三角形OABの内部に含まれる格子点の個数を求めよ。ただし、格子点とは
x座標とy座標が共に整数である点のことであり、内部には辺上の点は含まれない。

(2)三角形OPQの内部に含まれる格子点の個数が三角形OABの内部に含まれる
格子点の個数の半分になるような組(m,n)をすべて求めよ。

2016千葉大学理系過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に5点O$(0,0), A(5,0), B(0,11), P(m,0), Q(0,n)$をとる。
ただし、mとnは$1 \leqq m \leqq 5,1 \leqq n \leqq 11$を満たす整数とする。
(1)三角形OABの内部に含まれる格子点の個数を求めよ。ただし、格子点とは
x座標とy座標が共に整数である点のことであり、内部には辺上の点は含まれない。

(2)三角形OPQの内部に含まれる格子点の個数が三角形OABの内部に含まれる
格子点の個数の半分になるような組(m,n)をすべて求めよ。

2016千葉大学理系過去問
投稿日:2022.12.16

<関連動画>

東京大学の整数問題!5つの文字を求める!?どう解く?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
この動画を見る 

【数Ⅰ】【図形と計量】面積応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような△ABCについて、∠Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求めよ。
(1)AB=4、AC=3、A=120°
(2)AB=10、AC=15、A=60°
この動画を見る 

数学ゴールデン【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。

出典:数学ゴールデン 数学オリンピック
この動画を見る 

福田のおもしろ数学428〜√n+1-√n-1が有理数になるような整数nが存在するかどうかを考える

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sqrt{n+1}-\sqrt{n-1}$が有理数となる

整数$n$は存在するか?
   
この動画を見る 

一次不等式の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
不等式$2x-3 \gt x+1$について、次の問いに答えよ。
 (1)不等式の解が$x \gt 2$となるように、定数$a$の値を求めよ。
 (2)不等式の解が$x=5$を含むように、定数$a$の範囲を求めよ。

$a$を定数とする。2つの不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x-4)-1 \gt -3(2x+11) ・・・① \\
4x+2a \lt 3x+2 ・・・②
\end{array}
\right.
\end{eqnarray}$
をともに満たす整数$x$がちょうど3個となるような$a$の値の範囲を求めよ。
この動画を見る 
PAGE TOP