15東京都教員採用試験(数学1-(5) 数列の和の最小値) - 質問解決D.B.(データベース)

15東京都教員採用試験(数学1-(5) 数列の和の最小値)

問題文全文(内容文):
$\boxed{1} - (5)$
$a_n=n^3-20n$
$S_n$の最小値とそのときの$n$の値を求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1} - (5)$
$a_n=n^3-20n$
$S_n$の最小値とそのときの$n$の値を求めよ.
投稿日:2021.01.26

<関連動画>

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
この動画を見る 

福田の数学〜中央大学2023年経済学部第2問〜確率漸化式

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の整数$a$を入力すると0以上$a$以下の整数のどれか1つを等しい確率で出力する装置がある。この装置に$a$=10を入力する操作を$n$回繰り返す。出力された$n$個の整数の和が偶数となる確率を$p_n$、奇数となる確率を$q_n$とするとき、以下の問いに答えよ。
(1)$p_1$, $q_1$を求めよ。
(2)$p_{n+1}$を$p_n$, $q_n$を用いて表せ。
(3)$p_n$を$n$の式で表せ。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 

福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
この動画を見る 

【数B】確率漸化式:さいころをn回投げたとき1の目が偶数回出る確率をp[n]とする(中略) (1)p1を求めよ。(2)p[n+1]をp[n]で表せ。(3)p[n] (n=1,2,3,..)を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
この動画を見る 
PAGE TOP