【数Ⅱ】【三角関数】三角関数の合成2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成2 ※問題文は概要欄

問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の不等式を解け。
(1) sinx+cosx$\geqq$$\frac{1}{\sqrt{2} }$
(2) cosx$\lt$$\sqrt{3}$sinx
(3) $\sqrt{2}$$\leqq$sinx-$\sqrt{3}$cosx$\lt$$\sqrt{3}$
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:12 (2)解説
3:22 (3)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の不等式を解け。
(1) sinx+cosx$\geqq$$\frac{1}{\sqrt{2} }$
(2) cosx$\lt$$\sqrt{3}$sinx
(3) $\sqrt{2}$$\leqq$sinx-$\sqrt{3}$cosx$\lt$$\sqrt{3}$
投稿日:2025.03.13

<関連動画>

【高校数学】和積の公式・積和の公式~覚えず導こう~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る 

【高校数学】 数Ⅱ-111 加法定理の応用①・2倍角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin \alpha=$①________

$\cos \alpha=$②______=______=________

$\tan \alpha=$③________

◎$\displaystyle \frac{π}{2} \lt \alpha \lt π$で、$\sin \alpha=\displaystyle \frac{7}{4}$のとき、次の値を求めよう。

④$\sin 2 \alpha$

⑤$\cos 2 \alpha$

⑥$\tan 2 \alpha$
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
この動画を見る 

福田の数学〜東北大学2024年文系第2問〜75°の三角比と図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#方べきの定理と2つの円の関係#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a$, $b$, $d$を正の実数とし、$xy$平面上の点O(0,0), A($a$,0), B($b$,0), D(0,$d$)が次の条件をすべて満たすとする。
$\angle OAD$=15°, $\angle OBD$=75°, AB=6
以下の問いに答えよ。
(1)$\tan 75°$の値を求めよ。
(2)$a$, $b$, $d$の値をそれぞれ求めよ。
(3)2点O, Dを直径の両端とする円をCとする。線分ADとCの交点のうちDと異なるものをPとする。また、線分BDとCの交点のうちDと異なるものをQとする。このとき、方べきの定理AP・AD=$\textrm{AO}^2$, BP・BD=$\textrm{BO}^2$ を示せ。
(4)(3)の点P,Qに対し、積AP・BQの値を求めよ。
この動画を見る 
PAGE TOP