福田の数学〜早稲田大学2021年教育学部第3問〜グラフの通過範囲とx固定法 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年教育学部第3問〜グラフの通過範囲とx固定法

問題文全文(内容文):
${\Large\boxed{3}}$
実数$a$が$0 \leqq a \leqq 1$を満たしながら動くとき、座標平面において3次関数$y=x^3-2ax+a^2 (0 \leqq x \leqq 1)$のグラフが通過する領域を$A$とする。このとき、次の問いに答えよ。
(1)直線$x=\frac{1}{2}$と$A$の共通部分に属する点の$y$座標の取り得る範囲を求めよ。
(2)$A$に属する点の$y$座標の最小値を求めよ。
(3)$A$の面積を求めよ。

2021早稲田大学教育学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
実数$a$が$0 \leqq a \leqq 1$を満たしながら動くとき、座標平面において3次関数$y=x^3-2ax+a^2 (0 \leqq x \leqq 1)$のグラフが通過する領域を$A$とする。このとき、次の問いに答えよ。
(1)直線$x=\frac{1}{2}$と$A$の共通部分に属する点の$y$座標の取り得る範囲を求めよ。
(2)$A$に属する点の$y$座標の最小値を求めよ。
(3)$A$の面積を求めよ。

2021早稲田大学教育学部過去問
投稿日:2021.06.03

<関連動画>

高校1・2年生必見 指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left(\dfrac{3^{\sqrt5}}{9}\right)^{\sqrt{9+4\sqrt5}}$
この動画を見る 

#島根大学2019#不定積分_44

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (\sin x)^{2018} \cos x \ dx$
を解け.

2019島根大学過去問題
この動画を見る 

【数Ⅱ】三角関数:方程式sin(θ+40°)=sinθ(ただし0°≦θ≦90°)をみたすθを求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第2問〜微分・積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
$a \gt 0$とし、$f(x)=x^2-(4a-2)x+4a^2+1$ とおく。座標平面上で、放物線
$y=x^2+2x+1$ を$C,$放物線$y=f(x)$を$D$とする。また、$l$を$C$と$D$の両方に
接する直線とする。

(1)lの方程式を求めよう。
$l$と$C$は点$(t,$ $t^2+2t+1)$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ ア\ \ }\ t+\boxed{\ \ イ\ \ }\right)\ x$$-t^2+\boxed{\ \ ウ\ \ }$ $\cdots$①
である。また、$l$と$D$は点$(s,$ $f(s))$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ エ\ \ }\ s-\boxed{\ \ オ\ \ }\ +\boxed{\ \ カ\ \ }\right)\ x$$-s^2+\boxed{\ \ キ\ \ }\ a^2+\boxed{\ \ ク\ \ }$ $\cdots$②

である。ここで、①と②は同じ直線を表しているので、$t=\boxed{\ \ ケ\ \ },$
$s=\boxed{\ \ コ\ \ }\ a$が成り立つ。
したがって、$l$の方程式は$y=\boxed{\ \ サ\ \ }\ x+\boxed{\ \ シ\ \ }$である。

(2)二つの放物線$C,D$の交点のx座標は$\boxed{\ \ ス\ \ }$である。
$C$と直線$\ t,$および直線$x=\boxed{\ \ ス\ \ }$で囲まれた図形の面積を$S$とすると
$S=\displaystyle \frac{a^{\boxed{セ}}}{\boxed{\ \ ソ\ \ }}$である。

(3)$a \geqq \displaystyle \frac{1}{2}$とする。二つの放物線$C,D$と直線$l$で囲まれた図形の中で
$0 \leqq x \leqq 1$を満たす部分の面積$T$は、$a \gt \boxed{\ \ タ\ \ }$のとき、$a$の値によらず
$T=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$のとき
$T=-\boxed{\ \ テ\ \ }\ a^3+\boxed{\ \ ト\ \ }\ a^2$$-\boxed{\ \ ナ\ \ }\ a+\displaystyle \frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$
である。

(4)次に、(2),(3)で定めた$S,T$に対して、$U=2T-3S$とおく。$a$が
$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$の範囲を動くとき、$Uはa=\displaystyle \frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$で
最大値$\displaystyle \frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒフ\ \ }}$をとる。

2020センター試験過去問
この動画を見る 

【判別式をイメージする!】2次関数の判別式と交点の数の解き方はこれだ!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

$y=x^2+2x-a$が$x$軸を2つの交点を持つような$a$の条件を求めよ


$y=2x^2+3x+a$が$x$軸を1つの交点を持つような$a$の条件を求めよ


$y=ax^2-4x+2$が$x$軸と交点を1つも持たないような$a$の条件を求めよ
この動画を見る 
PAGE TOP