【数Ⅲ】【微分とその応用】関数の最大と最小5 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数の最大と最小5 ※問題文は概要欄

問題文全文(内容文):
(1) 関数 y=xex2+xの極値を求めよ。
(2) 2次関数 f(x)=ax2+bx+cに対して、F(x)=xef(x)で定義された関数y=F(x)が極値を持つための、定数a,b,cについての必要十分条件を求めよ。
チャプター:

0:00 オープニング
0:40 極値の判定
2:15 (2)の解説
3:40 導関数の符号が変わるための条件
4:25 条件の書き上げ

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 関数 y=xex2+xの極値を求めよ。
(2) 2次関数 f(x)=ax2+bx+cに対して、F(x)=xef(x)で定義された関数y=F(x)が極値を持つための、定数a,b,cについての必要十分条件を求めよ。
投稿日:2025.03.01

<関連動画>

福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III
連続と微分可能(1)
f(x)x=aで微分可能 f(x)x=aで連続
を示せ。また、逆が成り立たないことを示せ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 f(x)=xex を考える。曲線C:y=f(x)の点(a, f(a)) における接線をla
し、接線laとy軸の交点を (0,g(a)) とおく。以下の問いに答えよ。
(1) 接線laの方程式とg(a)を求めよ。
以下、aの関数g(a) が極大値をとるときのaの値をbとおく。
(2) bを求め、点(b,f(b)) は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 (b,f(b)) における接線lbと x軸の交点のx座標cを求めよ。さらに、
cx0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線lbおよびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

指数不等式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

(53)x2+x3x+123(52)x(3x+1)
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) y=xx2+1
(2) y=2x+x21
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
x3+3nx2(3n+2)=0
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解をanとする。
 limnanを求めよ。
この動画を見る 
PAGE TOP preload imagepreload image