線形代数:#2線形写像の判定 - 質問解決D.B.(データベース)

線形代数:#2線形写像の判定

問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.

(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.

(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.

(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.

(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.

(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.

(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.

(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.

(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.

投稿日:2021.05.04

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

埼玉大 直方体の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三辺の和が9cmで表面積が$48m^2$の直方体の体積の最大値を求めよ.

長崎大過去問
この動画を見る 

産業医大 3次方程式と2次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.

1996産業医大過去問
この動画を見る 

複素数の7乗の実部の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7i}}{2})^7$
の実部を求めよ
この動画を見る 

【高校数学】数Ⅲ-21 三角形の形状②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
この動画を見る 
PAGE TOP