合同式の応用 - 質問解決D.B.(データベース)

合同式の応用

問題文全文(内容文):
6桁の整数である.
n=1234A5であり,n2+4n+111の倍数となるAをすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
6桁の整数である.
n=1234A5であり,n2+4n+111の倍数となるAをすべて求めよ.
投稿日:2020.06.12

<関連動画>

群馬大(医) ピタゴラス数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
a2+b2=c2,bが2の累乗がcbの差が1である(a,b,c)をすべて求めよ.

2018群馬大(医)過去問
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (2)17nの1の位の数が1になる最小の自然数n    である。また、17555の1の位の数を求めると、    である。
この動画を見る 

整数問題 最大公約数と最小公倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ABの最大公約数をG,最小公倍数をLとする.
(A+B)22LG=3600,A,Bを求めよ.
この動画を見る 

123123‥‥123の中には2021の倍数が必ずある

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
123123123のように123が繰り返し並ぶ数の中には必ず2021の倍数があることを示せ.
この動画を見る 

図形問題にみえて実は〇〇問題 慶應義塾高校

アイキャッチ画像
単元: #数Ⅰ#数A#図形と計量#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは3以上の整数とする。
正n角形の1つの内角をx°とするときxの値が整数となる正n角形は何個?

慶應義塾高等学校
この動画を見る 
PAGE TOP preload imagepreload image