問題文全文(内容文):
$6$桁の整数である.
$n=1234A5$であり,$n^2+4n+1$が$11$の倍数となる$A$をすべて求めよ.
$6$桁の整数である.
$n=1234A5$であり,$n^2+4n+1$が$11$の倍数となる$A$をすべて求めよ.
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$6$桁の整数である.
$n=1234A5$であり,$n^2+4n+1$が$11$の倍数となる$A$をすべて求めよ.
$6$桁の整数である.
$n=1234A5$であり,$n^2+4n+1$が$11$の倍数となる$A$をすべて求めよ.
投稿日:2020.06.12