15奈良県教員採用試験(数学:中-4番 整数問題) - 質問解決D.B.(データベース)

15奈良県教員採用試験(数学:中-4番 整数問題)

問題文全文(内容文):
中-4⃣
$x^2-2xy+2y^2-2x-3y+5=0$を満たす整数x,yの組を求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
中-4⃣
$x^2-2xy+2y^2-2x-3y+5=0$を満たす整数x,yの組を求めよ。
投稿日:2020.08.14

<関連動画>

奈良教育大 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割ると3余り,17で割ると8余る.自然数,3桁最大は?

奈良教育大過去問
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。

2022早稲田大学理工学部過去問
この動画を見る 

東北大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$

(1)
$a,b$はともに正、示せ

(2)
$b \gt 1$のとき、$a$偶数

(3)
$(a,b)$すべて求めよ

出典:2018年東北大学 過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(3)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(3)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B=aCb$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。$_{4a+1}C_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

階乗に関する問題!! 24で割った余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1!+2!+3!+・・・+2022!
24で割った余りは?
この動画を見る 
PAGE TOP