大学入試問題#717「これはよく考えられた問題だな~~」 早稲田商学部(2012) 対数 - 質問解決D.B.(データベース)

大学入試問題#717「これはよく考えられた問題だな~~」 早稲田商学部(2012) 対数

問題文全文(内容文):
$log_3\ x-\displaystyle \frac{1}{log_9\ x}=(-1)^x$を満たす正の整数$x$の値を求めよ。

出典:2012年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_3\ x-\displaystyle \frac{1}{log_9\ x}=(-1)^x$を満たす正の整数$x$の値を求めよ。

出典:2012年早稲田大学商学部 入試問題
投稿日:2024.01.27

<関連動画>

東北大 常用対数 桁数と最高位の数字 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
この動画を見る 

大学入試問題 岡山県立大学2010 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\ x}{1+\cos\ 2x}dx$

出典:2010年岡山県立大学 入試問題
この動画を見る 

大学入試問題#792「初手が重要!!」 #室蘭工業大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。

出典:2020年室蘭工業大学 入試問題
この動画を見る 

学習院大 整式の剰余 積の微分公式証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n-1$を$(x-1)^2$で割った余りを求めよ

出典:学習院大学 過去問
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 
PAGE TOP