【数B】【数列】数学的帰納法2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】数学的帰納法2 ※問題文は概要欄

問題文全文(内容文):
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
投稿日:2025.04.26

<関連動画>

福田のおもしろ数学378〜ある漸化式で定められる数列の最初の2025項が正で2026番目が初めて負になることが可能かどうかの検証

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{0}>0, c>0, a_{n+1}=\frac{a_{n}+c}{1-a_{n}c}$で定まる数列${a_{n}}$に対し、$a_{0}, a_{1}, \cdots ,a_{2024}$がすべて正であり、$a_{2025}<0$となることは可能か。
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 

横浜国大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る 

福田のおもしろ数学505〜フィボナッチ数列の性質

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

フィボナッチ数列$\{f_n\}$

$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$

に対し、

$f_m・f_n=mn$

を満たす自然数の組$(m,n)$をすべて求めて下さい。
    
この動画を見る 

3つの解法・漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=8$
$a_{n+1}=3a_n+4^n$
これを解け.
この動画を見る 
PAGE TOP