ざ・見掛け倒し - 質問解決D.B.(データベース)

ざ・見掛け倒し

問題文全文(内容文):
$11^{2023}+13^{2023}を144で割った余りを求めよ.$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{2023}+13^{2023}を144で割った余りを求めよ.$
投稿日:2023.04.04

<関連動画>

3つの素数の平方の和が素数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る 

北海道大 整数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ

出典:北海道大学 過去問
この動画を見る 

5/17の動画に対する質問への返答

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^4+x^2+1)^{101}$と$x^3-1$で割った余りを求めよ.
この動画を見る 

福田のおもしろ数学330〜三角形の成立条件と条件を満たす三角形の個数

アイキャッチ画像
単元: #数A#図形の性質#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
この動画を見る 

自作問題・良問(自画自賛)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ

$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
この動画を見る 
PAGE TOP