問題文全文(内容文):
$\boxed{3}$
$x,y,z,a \in IR$,$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,
(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
$\boxed{3}$
$x,y,z,a \in IR$,$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,
(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$x,y,z,a \in IR$,$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,
(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
$\boxed{3}$
$x,y,z,a \in IR$,$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,
(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
投稿日:2021.02.27





