福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
投稿日:2023.03.31

<関連動画>

福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(3)円$(x-3)^2+(y-3)^2=5$とlが共有点を持たない確率は$\frac{\boxed{サ}}{\boxed{シ}}$である。

2022上智大学文系過去問
この動画を見る 

20年5月数検準1級1次試験(楕円)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.

20年5月数検準1級1次試験(楕円)過去問
この動画を見る 

数学「大学入試良問集」【11−2 交点を通過する円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#都立科学技術大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
直線$l:(1-k)x+(1+k)y+2k-14=0$は定数$k$の値によらず定点$A$を通る。
このとき、次の各問いに答えよ。
(1)
定点$A$の座標を求めよ。

(2)
$xy$平面上に点$B$をとる。
原点$O$と2点$A,B$を頂点とする三角形$OAB$が正三角形になるとき、正三角形$OAB$の外接円の中心の座標を求めよ。

(3)
直線$l$と円$C:x^2+y^2=16$の2つの交点を通る円のうちで、2点$`(-4,0),Q(2,0)$を通る円の方程式を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。

2017東京医科歯科大学医学部過去問
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP