福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積

問題文全文(内容文):
数学$\textrm{III}$ 極限(14)

$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。 
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(14)

$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。 
投稿日:2021.05.17

<関連動画>

【高校数学】数Ⅲ-68 数列の極限④ はさみうちの原理

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}\dfrac{(-1)^n}{n+3}$

②$\displaystyle \lim_{n\to\infty}\dfrac{1}{n}\sin^2 n\theta \quad $($\theta$は定数)
この動画を見る 

東大入試問題 無限級数 数列の和 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学過去問題
無限級数
$\frac{r}{1-r^2}$+$\frac{r^2}{1-r^4}$+$\frac{r^4}{1-r^8}$+$\cdots$+$\frac{r^{2^{n-1}}}{1-r^{2^{n}}}$
この動画を見る 

【高校数学】数Ⅲ-66 数列の極限②

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}(-3n+8)$

②$\displaystyle \lim_{n\to\infty}(n-1)$

③$\displaystyle \lim_{n\to\infty}\left(5+\dfrac{2}{n}\right)$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{n-3}{2n+1}$

⑥$\displaystyle \lim_{n\to\infty}(4n-3n^2)$
この動画を見る 

#21 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^\infty\ \displaystyle \frac{k}{1+k^2+k^4}$を求めよ。
この動画を見る 

福田の数学〜浜松医科大学2024医学部第3問〜等式の証明と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1) すべての自然数$n$に対して
$\begin{eqnarray}\displaystyle \sum_{k=1}^n \displaystyle \frac{(-1)^{k-1}}{k} =
\begin{cases}
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m+k} & (n が偶数(n = 2m)のとき) \\
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m-1+k} & ( nが奇数(n = 2m-1)のとき )
\end{cases}
\end{eqnarray}$
を証明せよ.

(2) (1)の左辺において$n \to \infty$として, 区分求積法を用いて無限級数
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$
の和の値を求めよ.

(3) (2)の無限級数の項の順序を入れ替えてできる無限級数
$1\underbrace{ -\frac{1}{2}-\frac{1}{4} }_{ 2項 }+\displaystyle \frac{1}{3}\underbrace{ -\frac{1}{6}-\frac{1}{8} }_{ 2項 }+\displaystyle \frac{1}{5}\underbrace{ -\frac{1}{10}-\frac{1}{12} }_{ 2項 }+\cdots$
の和の値を求めよ.

(4) 上の結果からどのようなことが考察されるか.「有限」と「無限」という言葉を用いて述べよ.
この動画を見る 
PAGE TOP