【数B】【数列】群数列 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】群数列 ※問題文は概要欄

問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
チャプター:

00:44 問題1の解説
08:55 問題2の解説
19:01 問題3の解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
投稿日:2025.03.17

<関連動画>

【数学B/テスト対策】階差数列(一般項)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数列の一般項anを求めよ。
(1)2,5,10,17,26,37
(2)3,4,6,10,18,
この動画を見る 

【数B】特殊な数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列の一般項を求めなさい。
a11
a22+3+2
a33+4+5+4+3
a44+5+6+7+6+5+4
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 自然数nに対し、定積分In=01xnx2+1dxを考える。このとき、次の問いに答えよ。
(1)In+In+2=1n+1を示せ。
(2)0≦In+1In1n+1を示せ。
(3)limnnIn を求めよ。
(4)Sn=k=1n(1)k12k とする。このとき(1), (2)を用いてlimnSn を求めよ。

2018名古屋大学理系過去問
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
2 xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面π1と3点(1,0,0),(0,1,0),(0,0,1)を通る平面π2を考える。x0=1, y0=2, z0=-2として、点P0(x0,y0,z0)から始めて、次の手順でP1(x1,y1,z1), P2(x2,y2,z2),... を決める。
kが偶数のとき、π1上の点で点Pk(xk,yk,zk)からの距離が最小となるものをPk+1(xk+1,yk+1,zk+1)とする。
kが奇数のとき、π2上の点で点Pk(xk,yk,zk)からの距離が最小となるものをPk+1(xk+1,yk+1,zk+1)とする。
このとき、次の問いに答えよ。
(1)π2に直交するベクトルのうち、長さが1でx成分が正のものn2を求めよ。
(2)xk+1,yk+1,zk+1をそれぞれxk,yk,zkを用いて表せ。
(3)limkxk, limkyk, limkzkを求めよ。
この動画を見る 

京大 徳島大 整数・漸化式 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
Pを素数、nを自然数
(Pn)!はPで何回割り切れるか

徳島大学過去問題
a1=22,an+1=2an
(1)一般項anを求めよ。
(2)初項から第n項までの積a1a2anを求めよ。
この動画を見る 
PAGE TOP preload imagepreload image