【数B】【数列】群数列 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】群数列 ※問題文は概要欄

問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
チャプター:

00:44 問題1の解説
08:55 問題2の解説
19:01 問題3の解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
投稿日:2025.03.17

<関連動画>

数列 by ハルハルさん すげー解答: 英語orドイツ語さん #Shorts

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
a1=0
an+1=(an+4)(an+10)
この動画を見る 

質問に対する返答です。整数問題,数列の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
1t<u<v6m
t+u+v=6m
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 数列{an}に対して、
Sn=k=1nak (n=1,2,3,)
とおく。{an}は、a2=1,a6=2および
(*)Sn=(n2)(n+1)24an+1 (n=1,2,3,)
を満たすとする。

(1)a1=    である。(*)でn=4,5とすると、a3+a4a5の関係が2通り定まり、
a5=    と求まる。さらに(*)でn=3として、a3=    ,a4=    と求まる。

(2)n2に対してan=SnSn1であるから(*)とあわせて
(n    )(n+    )2an+1=(n3    n2+    )an (n=2,3,)

ゆえに、n3ならば(n+    )an+1=(n    )anとなる。そこで、n3
対してbn=(nr)(ns)(nt)anとおくと、漸化式
bn+1=bn (nz3,4,5,)
が成り立つ。ただしここに、r<s<tとしてr=    ,s=    ,t=    である。
したがって、n4に対して
an=    a4(nr)(ns)(nt)
となる。この式はn=3の時も成立する。

(3)n2に対して
Sn=    (n+    )(n    )n(n    )
であるから、Sn59となる最小のnn=    である。

2021慶應義塾大学経済学部過去問
この動画を見る 

慶應義塾大(商)数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
k=1nk2k+2

出典:2000年慶應義塾大学商学部 過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
5 1個のさいころをn回投げて、k回目に出た目をakとする。bn
bn=k=1na1nkak
により定義し、b_nが7の倍数とする確率をpnとする。
(1)p1, p2を求めよ。
(2)数列{pn}の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image