14東京都教員採用試験(数学:1-6番 区分求積法) - 質問解決D.B.(データベース)

14東京都教員採用試験(数学:1-6番 区分求積法)

問題文全文(内容文):
1⃣(6)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \frac{2k}{n^2+k^2}$
$\displaystyle \int_0^1 f(x) dx = \displaystyle \lim_{ n \to \infty } \frac{1}{n}
\displaystyle \sum_{k=1}^n f(\frac{k}{n})$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣(6)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \frac{2k}{n^2+k^2}$
$\displaystyle \int_0^1 f(x) dx = \displaystyle \lim_{ n \to \infty } \frac{1}{n}
\displaystyle \sum_{k=1}^n f(\frac{k}{n})$
投稿日:2020.09.11

<関連動画>

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る 

大学入試問題#365「さすがに小問」 旭川医科大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}log(x^2+1)dx$

出典:2014年旭川医科大学 入試問題
この動画を見る 

大学入試問題#8 東京理科大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
この動画を見る 

大学入試問題#497「まあ、これがベターなのかな」  産業医科大学 改 (2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ 2 }}^{\sqrt{ 3 }} x\ log(x^2-1)\ dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#344「みるからにあの性質・・・」 富山大学 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{x\ sin\ x}{1+e^{-x}}dx$

出典:富山大学 入試問題
この動画を見る 
PAGE TOP