03東京都教員採用試験(数学:1-(1) 対数の方程式) - 質問解決D.B.(データベース)

03東京都教員採用試験(数学:1-(1) 対数の方程式)

問題文全文(内容文):
$log_2(x+1)-log_{(x+1)}8-2=0$を解け

出典:東京都教員採用試験
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_2(x+1)-log_{(x+1)}8-2=0$を解け

出典:東京都教員採用試験
投稿日:2021.08.23

<関連動画>

名古屋大学 どっちがでかい?文理の差は?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\log_2 3$ vs $\dfrac{3}{2}$
$\log_2 3$ vs $\log_3 4$

名古屋大過去問
この動画を見る 

早稲田大 対数 2次方程式 負の実数解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$

出典:1981年早稲田大学 過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{3^{4}}$ VS $ 4^{4^{3}}$
どちらが大きいか求めよ.
*$ 3^5=243,2^8=256$
$ ell= \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right) \lt 3 $
この動画を見る 

対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。

奈良県立医大過去問
この動画を見る 

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 
PAGE TOP