東大 恒等式 - 質問解決D.B.(データベース)

東大 恒等式

問題文全文(内容文):
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$

出典:東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$

出典:東京大学 過去問
投稿日:2019.07.14

<関連動画>

指数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・25^{\frac{1}{x}}\leqq 45$
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^{ab}+x^{a+b}+1$,$g(x)=x^2+x+1$
$a,b$は自然数とする.
$f(x)$が$g(x)$で割り切れるための$a,b$の条件を求めよ.
この動画を見る 

【数Ⅱ】式と証明:二項定理 覚え方編

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(a+b)^n$を一般項をr番目として、二項定理を用いて展開しなさい。表記する際には、第1,2,3項と第r項,そして第n-2,n-1,n項を表すこと。なお、a,b,n,rの文字は用いて表してよい。
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
この動画を見る 

【高校数学】  数Ⅱ-7  整式の割り算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
この動画を見る 
PAGE TOP