問題文全文(内容文):
$abc=1$を満たす正の数$a, b, c$に対して$\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leqq 1$であることを示せ。
$abc=1$を満たす正の数$a, b, c$に対して$\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leqq 1$であることを示せ。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師:
福田次郎
問題文全文(内容文):
$abc=1$を満たす正の数$a, b, c$に対して$\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leqq 1$であることを示せ。
$abc=1$を満たす正の数$a, b, c$に対して$\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leqq 1$であることを示せ。
投稿日:2024.11.11





