佐賀大(医)3次方程式の解の公式 - 質問解決D.B.(データベース)

佐賀大(医)3次方程式の解の公式

問題文全文(内容文):
$\alpha,\beta$は正の実数である.

(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.

(2)$x^3+6x-2=0$の実数解を求めよ.

2020佐賀大(医)過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha,\beta$は正の実数である.

(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.

(2)$x^3+6x-2=0$の実数解を求めよ.

2020佐賀大(医)過去問
投稿日:2021.06.01

<関連動画>

簡単な指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^x-3^x=\sqrt{6^x-9^x}$
これの実数解を求めよ.
この動画を見る 

岡山大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
この動画を見る 

組立除法、三角関数の合成、視聴者からの質問への返答

アイキャッチ画像
単元: #複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
組立除法、三角関数の合成、視聴者からの質問への返答です.
\begin{array}{r}
x-α\enclose{longdiv}{ax^3+bx^2+cx+d\phantom{0}} \\[-3pt]

\end{array}
この動画を見る 

ざ・見掛け倒し 複素数の基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$のとき,$x^{2020^{2021}}+\dfrac{1}{x^{2021^{2021}}}$の値を求めよ.
この動画を見る 

京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?

出典:2008年京都大学 過去問
この動画を見る 
PAGE TOP