04岡山県教員採用試験(数学:1-(4) 数列) - 質問解決D.B.(データベース)

04岡山県教員採用試験(数学:1-(4) 数列)

問題文全文(内容文):
$\boxed{1}-(4)$
$a_1=1,S_n=n^2a_n$とする.
一般項$a_n$を求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$a_1=1,S_n=n^2a_n$とする.
一般項$a_n$を求めよ.
投稿日:2021.03.22

<関連動画>

センター試験(追試)数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_1=2$
$C_{n+1}=-C_n+n^2+3$

(1)
$C_{25}-C_{23}$の値を求めよ。

(2)
$C_{25}$の値を求めよ。

出典:2004年センター試験 追試問題
この動画を見る 

【高校数学】 数B-65 等比数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$r$を掛けると,次の項が得られるとき,
この数列を等比数列といい,$r$をその公比という.
このとき,すべての自然数$n$について,①$a_{n+1}=\quad$が成り立つ.
また,初項$a$,公比$r$の等比数列$\{a_n \}$の一般項は
②$a_n=\quad$で求めることができる.

次の等比数列の$\Box$に適する数を入れ,一般項を求めよう.

③$1,3,9,\Box,\Box,・・・$

④$\Box,10,-20,\Box,-80,・・・$

⑤$3,1,\Box,\dfrac{1}{9},\Box,・・・$
この動画を見る 

【数B】【数列】数学的帰納法4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る 

東大 三角比と漸化式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.

(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)

1994東大過去問
この動画を見る 

秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る 
PAGE TOP