大学入試問題#683「早稲田大学人間科学部(2014)と同型」 昭和大学医学部(2023) - 質問解決D.B.(データベース)

大学入試問題#683「早稲田大学人間科学部(2014)と同型」 昭和大学医学部(2023)

問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8$
$a^2+b^2+c^2=32$
を満たすとき、$c$の値が取りうる範囲を求めよ。

出典:2023年昭和大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8$
$a^2+b^2+c^2=32$
を満たすとき、$c$の値が取りうる範囲を求めよ。

出典:2023年昭和大学医学部 入試問題
投稿日:2023.12.23

<関連動画>

東大 東大受験芸人 たわしさん応援企画 2003東大入試問題

アイキャッチ画像
単元: #学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$
$S_n=\alpha^n+\beta^n$

(1)
$S_1,S_2,S_3$を求めよ
$S_n$を$S_{n-1},S_{n-2}$で表せ

(2)
$S_n$は正の整数であることを示し、$S_{2003}$の1の位を求めよ

(3)
$\alpha^{2003}$以下の最大の整数の1の位の数

出典:2003年東京大学 過去問
この動画を見る 

東邦(医) 整数 不定方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89東邦大学過去問題
0,n,-n (n自然数)のいずれかが書かれたカードが17枚、和が-24で平方の和は108である。
各カードの枚数とnの値。
この動画を見る 

京都大 整数問題 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'96京都大学過去問題
m,nは自然数で、m<nを満たすものとする。
$m^n+1,n^m+1$がともに10の倍数となるm,nを1組与えよ。
この動画を見る 

大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 
PAGE TOP