大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用 - 質問解決D.B.(データベース)

大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用

問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。

出典:1997年お茶の水女子大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:16 本編スタート
06:13 作成した解答①
06:23 作成した解答②
06:34 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。

出典:1997年お茶の水女子大学 入試問題
投稿日:2023.02.12

<関連動画>

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 

微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
この動画を見る 

筑波大 指数・対数関数の微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ

出典:筑波大学 過去問
この動画を見る 

大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

【数Ⅲ-126】微分の不等式への応用②

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
この動画を見る 
PAGE TOP