福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)整数x,yがx \gt 1,y \gt 1,x ≠yを満たし、等式\\
6x^2+13xy+7x+5y^2+7y+2=966\\
を満たすとする。\\
(\textrm{i})6x^2+13xy+7x+5y^2+7y+2を因数分解すると\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})この等式を満たすxとyの組をすべて挙げると(x,y)=\boxed{\ \ サ\ \ }である。
\end{eqnarray}

2021慶應義塾大学薬学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)整数x,yがx \gt 1,y \gt 1,x ≠yを満たし、等式\\
6x^2+13xy+7x+5y^2+7y+2=966\\
を満たすとする。\\
(\textrm{i})6x^2+13xy+7x+5y^2+7y+2を因数分解すると\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})この等式を満たすxとyの組をすべて挙げると(x,y)=\boxed{\ \ サ\ \ }である。
\end{eqnarray}

2021慶應義塾大学薬学部過去問
投稿日:2021.07.27

<関連動画>

二次方程式が整数解を持つ条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m$自然数

$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
この動画を見る 

福田の一夜漬け数学〜2次関数・2次不等式(1)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x^2-7x-60 \gt 0$
$2x^2+5x-3 \lt 0$
$2x^2-3x-1 \geqq 0$
$-x^2+2x+1 \geqq 0$

$x^2-8x+16 \leqq 0$
$-4x^2+4x-1 \lt 0$
$x^2-4x+5 \gt 0$
$-2x^2+4x-5 \gt 0$

を満たすようなxの範囲をそれぞれ求めよ。
この動画を見る 

名古屋大 円の方程式 2円と直線に接する円 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08名古屋大学過去問題
2つの円、$x^2+(y-2)^2=9$と$(x-4)^2+(y+4)^2=1$に外接し、x=6と接する円を求めよ。
この動画を見る 

二次関数の難問!大事な考え方【神戸大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を実数とし,$f(x)=-x^2-2x+2,g(x)=-x^2+ax+a$とする。以下の問いに答えよ。

(1)すべての実数$s,t$に対して$f(x)≧g(t)$が成り立つような,$a$の値の範囲を求めよ。

(2)$0≦x≦1を満たすすべての$x$に対して,$f(x)≧g(x)が成り立つような$a$の範囲を求めよ。

神戸大過去問
この動画を見る 

素数になる2次式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る 
PAGE TOP