福田のおもしろ数学566〜条件付き不等式の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学566〜条件付き不等式の証明

問題文全文(内容文):

$a\gt 0,b\gt 0,c\gt 0,abc=1$のとき、

$\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} \geqq \dfrac{3}{2}$

を証明して下さい。
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b\gt 0,c\gt 0,abc=1$のとき、

$\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} \geqq \dfrac{3}{2}$

を証明して下さい。
    
投稿日:2025.07.21

<関連動画>

【高校数学】 数Ⅱ-22 不等式の証明④

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0<a<b,a+b=1$のとき、$b、2ab、a^2+b^2$を小さい方から順に並べよう。
この動画を見る 

【高校数学】数Ⅲ-13 ド・モアブルの定理②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の値を計算しよう.

①$(\sqrt3 - i) ^ 4$

②$(1-1)^2$

③$\left(\dfrac{2}{- 1 + i}\right) ^{- 6}$
この動画を見る 

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 

ε-δ論法 #1 f(x)=√xが連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
Question
$f(x)=\sqrt x\ (x\geqq 0)$が連続であることを$\xi -\vartheta$論法で示せ.
この動画を見る 

【数Ⅱ】【式と証明】等式の証明4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y+z=0 ,2x^2+2y^2-z^2=0$ のとき、$x=y$ であることを証明せよ。
この動画を見る 
PAGE TOP