福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡 - 質問解決D.B.(データベース)

福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡

問題文全文(内容文):

$\boxed{5}$

$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする

半径$1$の球面とする。

また、点$P(a,b,c)$を

点$(0,0,1)$とは異なる球面$S$上の点とする。

点$P$と点$N$を通る直線$\ell$と$xy$平面との

交点を$Q$とおく。

このとき、以下の問いに答えよ。

(1)点$Q$の座標を$a,b,c$を用いて表せ。

(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を

$m$とする。

直線$m$と球面$S$の交点のうち、

点$N$以外の交点の座標を$p,q$を用いて表せ。

(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、

ベクトル$(3,4,5)$に直交する

平面$\alpha$を考える。

点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、

点$Q$は$xy$平面上の円周上を動くことを示せ。

$2025$年東北大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする

半径$1$の球面とする。

また、点$P(a,b,c)$を

点$(0,0,1)$とは異なる球面$S$上の点とする。

点$P$と点$N$を通る直線$\ell$と$xy$平面との

交点を$Q$とおく。

このとき、以下の問いに答えよ。

(1)点$Q$の座標を$a,b,c$を用いて表せ。

(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を

$m$とする。

直線$m$と球面$S$の交点のうち、

点$N$以外の交点の座標を$p,q$を用いて表せ。

(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、

ベクトル$(3,4,5)$に直交する

平面$\alpha$を考える。

点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、

点$Q$は$xy$平面上の円周上を動くことを示せ。

$2025$年東北大学理系過去問題
投稿日:2025.04.03

<関連動画>

【高校数学】  数Ⅱ-7  整式の割り算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
この動画を見る 

指数対数 数Ⅱ 指数計算の基本2【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0, $a^{2x}=5$のとき,$(a^{4x}-a^{-4x})÷(a^x-a^{-x})$の値を求めよ
$2^x-2^{-x}=3$のとき,$2^x+2^{-x}$の値を求めよ
地球と太陽の距離を$1.5×10^{11}$m,光の進む速さを毎秒$3.0×10^8$mとする。このとき,光が太陽から地球まで到達するには何秒かかるか
この動画を見る 

一橋大学 三次関数の最大値 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
この動画を見る 

数学「大学入試良問集」【12−1 微分と極値】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数とする。
$f(x)=x^3+ax^2+(3a-6)x+5$について以下の問いに答えよ。

(1)
関数$y=f(x)$が極値をもつ$a$の範囲を求めよ。

(2)
関数$y=f(x)$が極値をもつ$a$に対して、関数$y=f(x)$は$x=p$で極大値、$x=q$で極小値をとるとする。
関数$y=f(x)$のグラフ上の2点$P(p,f(p)),Q(q,f(q))$を結ぶ直線の傾き$m$を$a$を用いて表せ。
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 
PAGE TOP