横浜市立(医)tanの半角 - 質問解決D.B.(データベース)

横浜市立(医)tanの半角

問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.

2019横浜市立(医)過去問
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.

2019横浜市立(医)過去問
投稿日:2021.03.21

<関連動画>

式の値 虚数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(2)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\triangle ABC$において、辺$BC$の中点を$M$とする。次を証明せよ。
$AB^2+AC^2=2(AM^2+BM^2)$

${\Large\boxed{2}}$ $\triangle ABC$の重心をGとするとき、次を証明せよ。
$AB^2+AC^2=BG^2+$$CG^2+$$4AG^2$
(注意)$A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$のとき$\triangle ABC$の重心の座標は
$\left(\displaystyle \frac{x_1+x_2+x_3}{3},\displaystyle \frac{y_1+y_2+y_3}{3}\right)$
この動画を見る 

√の中に8がいっぱい!!

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{8\sqrt{8\sqrt8}}=2$
この動画を見る 

高専数学 微積II #50(1)(2) 曲面の接平面の方程式

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の曲面上の点における接平面の方程式を求めよ.

(1)$z=x^2+2y^2 \ (1,1,3)$
(2)$z=\sqrt{5-x^2y^2} \ (1,2,1)$
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+・・・・・・・+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を17で割った余りを求めよ.
この動画を見る 
PAGE TOP