福田のおもしろ数学487〜三角関数のシグマ計算の必殺テクニック - 質問解決D.B.(データベース)

福田のおもしろ数学487〜三角関数のシグマ計算の必殺テクニック

問題文全文(内容文):

任意の自然数$m$に対して

$\displaystyle \sum_{k=1}^{m} (-1)^k \cos \dfrac{k\pi}{2m+1}=-\dfrac{1}{2}$

が成り立つことを証明して下さい。
    
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

任意の自然数$m$に対して

$\displaystyle \sum_{k=1}^{m} (-1)^k \cos \dfrac{k\pi}{2m+1}=-\dfrac{1}{2}$

が成り立つことを証明して下さい。
    
投稿日:2025.05.03

<関連動画>

大学入試問題#920「工夫しがいがある問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$

出典:1963年 一橋大学
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 

福田のおもしろ数学503〜複雑な三角方程式が実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\cos^2\pi(a-x)-2\cos \pi(a-x)$

$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$

が実数解をもつような

自然数$a$の最小値を求めよ。
    
この動画を見る 

福田のおもしろ数学408〜変数が素数である連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
pq=r+1 \\
2(p^2+q^2)=r^2+1
\end{array}
\right.
\end{eqnarray}$

を満たす素数$p,q,r$を求めて下さい。
この動画を見る 

√5が無理数であるユニークな証明 黄金比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 5 }$が無理数であることを証明せよ
この動画を見る 
PAGE TOP