2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】 - 質問解決D.B.(データベース)

2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

問題文全文(内容文):
方程式 $(x^{3}-x)^{2}(y^{3}-y)$=86400

を満たす整数の組$(x,y)$をすべて求めよ。
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式 $(x^{3}-x)^{2}(y^{3}-y)$=86400

を満たす整数の組$(x,y)$をすべて求めよ。
投稿日:2023.03.17

<関連動画>

福田の数学〜早稲田大学2023年教育学部第2問〜三角形と線分の長さの比

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 3角形ABCに対して、点Pを3角形ABCの内部の点とする。また、直線AB,BC,CA上の点で、点Pに最も近い点をそれぞれX,Y,Zとする。線分PA,PB,PCの長さをそれぞれ$a$,$b$,$c$とし、その和を$s$とする。線分PX,PY,PZの長さをそれぞれ$x$,$y$,$z$とし、その和を$t$とする。$\angle$APB=2$\gamma$とし、その2等分線と直線ABの交点をX'とする。このとき、次の問いに答えよ。
(1)3角形ABCは正3角形であり、点Pは$\angle$Aの2等分線にあるときの$\frac{s}{t}$の最小値を求めよ。
(2)線分PX'の長さを$a$,$b$,$\cos\gamma$を用いて表せ。
(3)3角形ABCと点P(ただし、点Pは3角形ABCの内部の点)を任意に動かすときの$\frac{s}{t}$の最小値を求めよ。$\angle$BPC=2$\alpha$, $\angle$CPA=2$\beta$としたとき、以下の不等式が成立することを利用してもよい。
$(a+b+c)-2(\sqrt{ab}\cos\gamma+\sqrt{bc}\cos\alpha\sqrt{ca}\cos\beta)$≧0
この動画を見る 

2021富山大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P\gt 3$,$P$と$P+4$は素数である.
(1)$P$を6で割った余りを示せ.
(2)$P+2$は3の倍数であることを示せ.
(3)$(P+1)(P+2)(P+3)$は$120$の倍数であることを示せ.

2021富山大過去問
この動画を見る 

2020年問題 整数問題2020

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$自然数、すべて求めよ
$a^2+b^2=2020$
この動画を見る 

軌跡 C 2021久留米大附設

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Pは辺AB上を動き、Bから直線PMに垂線BQを引く。
(点PがBと一致するときは点QはBと一致するとする)
線分BQが通過した部分で正三角形ABCの内部にある部分の面積=?
(2021久留米大学附設高等学校)
この動画を見る 

倍数の性質の利用 2021 新宿 B

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の条件を満たす4ケタの自然数A=?
・Aの千の位と一の位を入れ替えた数をB
・Aの十の位と一の位を入れ替えた数をC
・Aの千の位と百の位を入れ替えた数をD
・Aは3の倍数
・Aは1の位が素数
・Bは5の倍数
・Cは10の倍数
・D-A=3600

2021都立新宿高等学校
この動画を見る 
PAGE TOP