福田の数学〜慶應義塾大学2023年薬学部第1問(3)〜3次関数と絶対不等式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2023年薬学部第1問(3)〜3次関数と絶対不等式

問題文全文(内容文):
$\Large\boxed{1}$ (3)a,bを実数とし、実数xの関数f(x)をf(x)=$x^3$+$ax^2$+$bx$-6とおく。
方程式f(x)=0はx=-1を解に持ち、f'(-1)=-7である。
(i)a=$\boxed{\ \ オ\ \ }$, b=$\boxed{\ \ カ\ \ }$である。
(ii)cは正の実数とする。f(x)≧3$x^2$+4(3c-1)$x$-16がx≧0において常に成立するとき、cの値の範囲は$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学薬学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)a,bを実数とし、実数xの関数f(x)をf(x)=$x^3$+$ax^2$+$bx$-6とおく。
方程式f(x)=0はx=-1を解に持ち、f'(-1)=-7である。
(i)a=$\boxed{\ \ オ\ \ }$, b=$\boxed{\ \ カ\ \ }$である。
(ii)cは正の実数とする。f(x)≧3$x^2$+4(3c-1)$x$-16がx≧0において常に成立するとき、cの値の範囲は$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学薬学部過去問
投稿日:2023.04.17

<関連動画>

ただの連立二元三次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
この動画を見る 

正方形と2つの正三角形の面積の和 2通りで解説

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの正三角形と正方形
全体の面積=?

*図は動画内参照
この動画を見る 

よく間違える二次不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-7<0$を解け
この動画を見る 

【高校数学】数Ⅰ-7 展開④(3次式の公式編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(a+b)^3=$①______,$(a+b)(a^2-ab+b^2)=$③______
$(a-b)^3=$②______,$(a-b)(a^2+ab+b^2)=$④______

◎展開しよう。
⑤$(x+3)^3$
⑥$(2x-y)^3$
⑦$(x-4)(x^2+4x+16)$
⑧$(3x+2y)(9x^2-6xy+4y^2)$
⑨$(a+b)^3(a-b)^3$
⑩$(x+y)^2(x^2-zy+y^2)^2$
この動画を見る 

早くも2022問題。視聴者が類題を作ってくれました

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を
$(x^{16}+1)(x^8+1)(x^4+1)(x^2+1)(x+1)$で割った余りを求めよ.
この動画を見る 
PAGE TOP