ハルハル様の作成問題④ #整数問題 【難】 - 質問解決D.B.(データベース)

ハルハル様の作成問題④ #整数問題 【難】

問題文全文(内容文):
$(x^3+1)^3+(x^2+1)^2=2^y$を満たす整数の組$(x,y)$をすべて求めよ。
チャプター:

00:00 問題掲示
00:19 本編スタート
08:43 作成した解答①の紹介
08:56 作成した解答②の紹介
09:09 作成した解答③の紹介
09:20 エンディング(楽曲提供:兄いえてぃ様)

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(x^3+1)^3+(x^2+1)^2=2^y$を満たす整数の組$(x,y)$をすべて求めよ。
投稿日:2022.08.13

<関連動画>

大阪大 整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
この動画を見る 

福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)$m,n$を$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{5}$とする。$m,n$の値を求めよ。
(3)$m,n$を自然数とし、$a^m=b^n=(ab)^5$とする。bの値をaを用いて表せ。

2022神戸大学文系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$n$を奇数とする。nと$[\frac{3n+2}{2}]$の積が6の倍数であるための必要十分条件は、
nを$\boxed{\ \ エ\ \ }$で割った時の余りが$\boxed{\ \ オ\ \ }$となるときである。ただし、
実数xに対しxを超えない最大の整数を[x]と表す。
また、$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$は$0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }$
を満たす整数である。$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$を求める過程を解答欄に記述しなさい。

2022慶應義塾大学理工学部過去問
この動画を見る 

福田のおもしろ数学232〜1980で割り切れる証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2450^n-1370^n+1150^n-250^n$が$1980$で割り切れることを示せ。
この動画を見る 

福田の数学〜中央大学2024理工学部第2問〜確率の基本性質と3で割ったときの剰余類

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。$1, \, 2, \, \ldots, \, n$ の数が1つずつ書かれた $n$ 枚のカードがある。これらをよく混ぜて1枚のカードを引き、そこに書かれた数を $X$ とする。そのカードを元に戻し、よく混ぜてからもう一度1枚のカードを引き、そこに書かれた数を $Y$ とする。このとき $X-Y$ が $3$ の倍数である確率を $p(n)$、$X-Y-1$ が $3$ の倍数である確率を $q(n)$、$X-Y+1$ が $3$ の倍数である確率を $r(n)$ とする。
$(1)$ $q(3)=\fbox{ク}$ である。
$(2)$ $r(n)$ は $q(n)$ を用いて $r(n)=\fbox{ケ}$ と表せる。
$(3)$ $n$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{コ}}{\fbox{サ}}$ が成り立つ。
$(4)$ $n-1$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{シ}}{\fbox{ス}}$ が成り立つ。
$(5)$ $n-2$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{セ}}{\fbox{ソ}}$ が成り立つ。
この動画を見る 
PAGE TOP