【数Ⅰ】【集合と論証】対偶の使い方 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【集合と論証】対偶の使い方 ※問題文は概要欄

問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。

(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。

【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
チャプター:

00:00~ 1問目 
03:33~ 2問目 
07:00~ 3問目 

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。

(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。

【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
投稿日:2024.11.06

<関連動画>

【データの分析⑥】共通テスト数学に向けて1週間でサクッと復習!【変量の変換】#データの分析 #変量の変換 #高校数学 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 

正五角形の作図と証明

アイキャッチ画像
単元: #数Ⅰ#複素数平面#図形と計量#三角比への応用(正弦・余弦・面積)#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
正五角形を作図せよ.
この動画を見る 

犯人は疑うから見つかるのだ 慶應義塾 角度

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照

慶応義塾大学
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率$p(0\leqq P\leqq 1)$で$+1$, $1-p$で$+2$進む.
自然数nの地点に到達する確率$P_n$を求めよ.

大阪教育大過去問
この動画を見る 
PAGE TOP