【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説

問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
チャプター:

0:00 オープニング
0:05 導入
1:40 グラフから条件を考える
3:36 条件から領域を図示

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
投稿日:2021.04.05

<関連動画>

#高知工科大学2024#定積分_25#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$

出典:2024年 高知工科大学
この動画を見る 

広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(3)〜放物線の法線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に
垂直な直線である。放物線$C_1:y=x^2$上の点$P(a,a^2)$(ただし、$a\neq 0$とする)
における法線の方程式は$y=\boxed{\ \ ア\ \ }$である。
また、実数$p,q$に対し、放物線$C_2:y=-(x-p)^2+q$上のある点における
法線が、放物線$C_1$上の点(1,1)における法線と一致するとき、pとqについて
$q=\boxed{\ \ イ\ \ }$という関係式が成り立つ。

2022慶應義塾大学商学部過去問
この動画を見る 

高専数学 微積I #259(1) 広義積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\dfrac{1}{r\sqrt{\log r}} dr$を計算せよ.
この動画を見る 

【高校数学】 数Ⅱ-29 2次方程式の解と判別式②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。

①$-2x^2-7=-6x$

②$(x+1)(x+3)=x(9-2x)$

◎次の2次方程式の実数解を求めよう。

③$2x^2-3x-3=0$

④$3x^2-8x+7=0$

⑤$4x^2+12x=9=0$
この動画を見る 
PAGE TOP