【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説

問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
チャプター:

0:00 オープニング
0:05 導入
1:40 グラフから条件を考える
3:36 条件から領域を図示

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
投稿日:2021.04.05

<関連動画>

福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(2)
$x\log x \geqq (x-1)\log(x+1) (x \geqq 1)$を証明せよ。
この動画を見る 

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

#数検準1級1次_4#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x(x^2+1)} dx$

出典:数検準1級1次
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 

一橋大 三次関数と接点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)

(1)
直線$PQ$の式($a,b$を用いて)

(2)
$P,Q$の座標($a,b$を用いて)

(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲

出典:一橋大学 過去問
この動画を見る 
PAGE TOP