【秘技を覚えよ】円の接線の方程式 - 質問解決D.B.(データベース)

【秘技を覚えよ】円の接線の方程式

問題文全文(内容文):
円の接線の方程式解説動画です
-----------------
直線$y=\sqrt{ 3 }x$と、円$(x-3)^2+y^2=4$の交点を通る、円$(x-3)^2+y^2=4$上の接線の方程式を求めよ。
単元: #数Ⅱ#円と方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
円の接線の方程式解説動画です
-----------------
直線$y=\sqrt{ 3 }x$と、円$(x-3)^2+y^2=4$の交点を通る、円$(x-3)^2+y^2=4$上の接線の方程式を求めよ。
投稿日:2020.10.21

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}

2021慶應義塾大学総合政策学部過去問
この動画を見る 

【数Ⅱ】円を表す方程式【図形と方程式の関係】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: めいちゃんねる
問題文全文(内容文):
円を表す方程式を求めよ.
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (2)\ 野菜Aには1個あたり栄養素x_1が8g、栄養素x_2が4g、栄養素x_3が2g\\
含まれ、野菜Bには1個あたり栄養素x_1が4g、栄養素x_2が6g、栄養素x_3\\
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで\\
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素x_1\\
を42g以上、栄養素x_2を48g以上、栄養素x_3を30g以上含まれるように\\
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース\\
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は\\
\\
(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })\\
\\
である。ただし、 \boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }とする。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 
PAGE TOP