問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.05