大学入試問題#570「ほんまにええ問題や~~」 By にっし~Diaryさん #解の個数 - 質問解決D.B.(データベース)

大学入試問題#570「ほんまにええ問題や~~」 By にっし~Diaryさん #解の個数

問題文全文(内容文):
$x$の方程式
$(x^2-6x+8)^2-k(x^2-6x+8)+4=0$の実数解の個数を調べよ。
チャプター:

00:00 イントロ(問題紹介)
00:24 本編スタート
07:18 作成した解答①
07:31 作成した解答②
07:42 エンディング(楽曲提供:兄いえてぃさん)

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x$の方程式
$(x^2-6x+8)^2-k(x^2-6x+8)+4=0$の実数解の個数を調べよ。
投稿日:2023.06.20

<関連動画>

東大 不等式 たくみさん4度目の登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
この動画を見る 

甲南大 関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-x+a)^2-x^2+x$の最小値を求めよ

出典:甲南大学 過去問
この動画を見る 

名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ

出典:2004年名古屋大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(14)
$y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)$のグラフを描け。凹凸、漸近線も調べよ。
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP