【数学Ⅱ/三角関数】三角方程式② - 質問解決D.B.(データベース)

【数学Ⅱ/三角関数】三角方程式②

問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$

(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$

(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
投稿日:2021.12.30

<関連動画>

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
この動画を見る 

秋田大(医)整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れる整数$A,B$を求めよ.$n$を自然数とする.

2014秋田大(医)過去問
この動画を見る 

小数のマイナス乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.2^{-2} =?$
この動画を見る 

2023年京大数学!整式の割り算!2通りで解説します【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2023}-1$を整式$x^{4}+x^{3}+x^{2}+x+1$で割ったときの余りを求めよ。

京都大過去問
この動画を見る 

福田の数学〜青山学院大学2025理工学部第4問〜折れ線の長さの和が4となる点の軌跡と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。

線分$AB$上の点$P$に対して、

$xy$平面上の点$Q$は以下の条件$(a),(b)$を

満たすとする。

$(a)$$P$と$Q$の$x$座標は等しく、

$Q$の$y$座標は正である。

$(b)$$AP+PQ+QB=4$

このとき、以下の問いに答えよ。

ただし、線分は両方の端点を含むものとする。

(1)$P$の座標を$(s,0)$とするとき、

$Q$の座標を$s$を用いて表せ。

(2)$P$が線分$AB$上を$A$から$B$まで動くとき、

$Q$の軌跡を$xy$平面上に図示せよ。

(3)$P$が線分$AB$上を$A$から$B$まで動くとき、

線分$PQ$が通過する範囲の面積を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 
PAGE TOP