福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式

問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
投稿日:2024.08.25

<関連動画>

【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る 

共通一次 三角関数 数学

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$

(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$

出典:共通一次試験 過去問
この動画を見る 

【高校数学】 数Ⅱ-46 高次方程式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$(x-2)(2x+1)=0$

②$(x+4)(x-3)(3x-2)=0$

③$(x^2-1)(x^2-16)=0$

④$x^4=81$
この動画を見る 

【高校数学】微分4.5~例題・増減表と極値・応用~ 6-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)関数$y=x^4-2x^2$の極値を求め、そのグラフをかけ。

(2)関数$f(x)=x^3+ax^2+bx^2-2$が$x=-1$で極大値をとり、$x=3$で極小値を
  とるように、定数$a,b$の値を定めよ。また、極値を求めよ。

(3)関数$f(x)=x^3-3x^2+ax$が$x=1$で極値をとるように定数$a$の値を定めよ
この動画を見る 

産業医科大 cos sin 和の値

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=\Box$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=\Box$

2019産業医大過去問
この動画を見る 
PAGE TOP