福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式

問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
投稿日:2024.08.25

<関連動画>

広島大 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$f(x)=x^2+ax+b$
$\int_0^1 xf(x) dx = \int_0^1 x^2f(x) dx$を満たす
(1)$\int_0^1 f(x) dx$の値
(2)方程式f(x)=0は相異2実根をもち、そのうち少なくとも1つは0と1の間にあることを示せ
この動画を見る 

三次関数の基本性質 変曲点について点対称 畳8畳

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-136 対数関数②・性質編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の数の大小を不等号を用いて表そう。

①$\log_32,\log_37,\log_34$

②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$

③$\log_32,\log_96,\displaystyle \frac{1}{2}$

④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xの関数$f(x)$を$f(x)=x^3$とする。
(1)xの関数$g(x)$を$g(x)=x^3-2x^2-x+3$とする。曲線$y=f(x)$と$y=g(x)$は
3個の交点をもつ。それら交点を$\ x \ $座標が小さい順にA,B,Cとすると、
点$A,B,C$の$\ x\ $座標はそれぞれ$ \boxed{ア},\ \boxed{イ},\ \boxed{ウ}$ である。

曲線$y=g(x)$の接線の傾きが最小となるのは、
接点の$\ x\ $座標が$\frac{\boxed{エ}}{\boxed{オ}}$のときで、
その最小値は$-\frac{\boxed{カ}}{\boxed{\ \ キ\ \ }}$である。
また、点Bを通る$y=g(x)$の接線の傾きの最小値は$-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(2)$x$ の関数$h(x)$が

$h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4$
を満たすとき、$h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4$である。
曲線$y=f(x)$と$y=h(x)$の交点の中点は$(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})$であり、

$y=f(x)$と$y=h(x)$で囲まれる図形の面積は
原点を通る直線$y=\boxed{\ \ コ\ \ }x$で2等分される。

2022明治大学全統過去問
この動画を見る 

福田のおもしろ数学165〜4次方程式を工夫して解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(x+2)^4$+$(x+1)^4$=17 を解け。
この動画を見る 
PAGE TOP