福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式

問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
投稿日:2024.08.25

<関連動画>

【高校数学】 数Ⅱ-43 剰余の定理と因数定理②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を因数分解しよう。

①$x^3-2x^3-x+2$

②$2x^3-7x^2+9$

③$2x^3-3x^2-11x+6$
この動画を見る 

北海道大 三次方程式 実数解条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ

(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2019年北海道大学 過去問
この動画を見る 

【数Ⅱ】【式と証明】等式の証明4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y+z=0 ,2x^2+2y^2-z^2=0$ のとき、$x=y$ であることを証明せよ。
この動画を見る 

福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを正の実数とする。直線$L:ax+by=1$と曲線$y=-\frac{1}{x}$との2つの交点
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を
Rとし、Lとy軸との交点をSとする。a,bが条件
$\frac{PQ}{RS}=\sqrt2$
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。

2022京都大学文系過去問
この動画を見る 

福田のおもしろ数学534〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b$が正の実数のとき

$\sqrt[3]{\dfrac{a}{b}}+\sqrt[3]{{b}{a}}\leqq \sqrt[3]{2(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}$

を証明して下さい。
    
この動画を見る 
PAGE TOP