福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)0 \lt \alpha \lt 1,m \gt 0とする。曲線y=x^{\alpha}-mx(x \geqq 0)とx軸で囲まれた図形\\
をx軸の周りに1回転させてできる回転体の体積をVとする。mを固定してa \to +0\\
とするときのVの極限値をmの式で表すと、\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }となる。\\
また、\alphaを固定してm \to \inftyとするときm^3Vが0でない数に収束するならば\\
\alpha=\boxed{\ \ (お)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)0 \lt \alpha \lt 1,m \gt 0とする。曲線y=x^{\alpha}-mx(x \geqq 0)とx軸で囲まれた図形\\
をx軸の周りに1回転させてできる回転体の体積をVとする。mを固定してa \to +0\\
とするときのVの極限値をmの式で表すと、\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }となる。\\
また、\alphaを固定してm \to \inftyとするときm^3Vが0でない数に収束するならば\\
\alpha=\boxed{\ \ (お)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
投稿日:2021.06.24

<関連動画>

資産2倍になる72の法則とは?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
資産が2倍になる72の法則に関して解説します.
この動画を見る 

福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+\displaystyle \frac{x}{(1+x)^2}+\displaystyle \frac{x}{(1+x)^3}+\cdots$

が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る 

原始ピタゴラス数を探せ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
原始ピタゴラス数に関して解説していきます.
この動画を見る 

【数Ⅲ】極限:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#全統模試(河合塾)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項$2p^2$、公比pの等比数列{$a_n$}がある。ただし、pは実数の定数とする。無限 等比級数$\displaystyle \sum_{n=1}^{\infty}a_n$が収束し、その和が1であるとき、次の問に答えよ。
(1)p の値を求めよ。
(2)母線の長さが1、高さがa[n]の円錐の体積を$V_n$とする。無限 級数$\displaystyle \sum_{n=1}^{\infty}V_n$は収束するか。収束するときはその和を求め、発散するとき はそのことを示せ。
(3)母線の長さが1、高さが$a_n$の円錐の側面積を$T_n$とす る。無限級数$\displaystyle \sum_{n=1}^{\infty}T_n$は収束するか。収束するときはその和を求め、発散 するときはそのことを示せ。
この動画を見る 
PAGE TOP