【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します - 質問解決D.B.(データベース)

【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
チャプター:

0:00 オープニング
0:24 nとxの極限の意味
1:19 結果が同じ場合
1:55 結果が違う場合
3:27 エンディング

単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
投稿日:2021.11.08

<関連動画>

数学「大学入試良問集」【17−5 図形と三角関数の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$O$を原点とする座標平面上に2点$A(2,0),B(0,1)$がある。
自然数$n$に対し、線分$AB$を$1:n$に内分する点を$P_n$とし、$\angle AOP_n\theta_n$とする。
ただし、$0 \lt \theta_n \lt \displaystyle \frac{\pi}{2}$である。
線分$AP_n$の長さを$l_n$として、$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{l_n}{\theta_n}$を求めよ。
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の一般項を求めよ。また、{an}の極限を求めよ。a₁=1/2、an+₁=an/2+an

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列$a_n$の一般項を求めよ。
また、$a_n$の極限を求めよ。

$a_1=\dfrac{1}{2}$、$a_{n+1}=\dfrac{a_n}{2+a_n}$
この動画を見る 

大学入試問題#218 東京都市大学(2019) 定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。

出典:2019年東京都市大学 入試問題
この動画を見る 

大学入試問題#874「構想力が大事」 #防衛医科大学 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } x \sin\{log(x+1)-log x\}$

出典:防衛医科大学
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(2)〜定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(2)$\log$を自然対数とするとき、次の等式が成り立つ。
$\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=$
$\frac{1}{\boxed{ウ}}\log\frac{\boxed{エ}}{\boxed{オ}}$

2022明治大学全統理系過去問
この動画を見る 
PAGE TOP