【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します - 質問解決D.B.(データベース)

【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
チャプター:

0:00 オープニング
0:24 nとxの極限の意味
1:19 結果が同じ場合
1:55 結果が違う場合
3:27 エンディング

単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
投稿日:2021.11.08

<関連動画>

福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
mを3以上の自然数、$\theta=\frac{2\pi}{m}$, $C_1$を半径1の円とする。
円$C_1$に内接する(全ての頂点が$C_1$上にある)正m角形を$P_1$とし、
$P_1$に内接する($P_1$の全ての辺と接する)円を$C_2$とする。
同様に、nを自然数とするとき、円$C_n$に内接する正m角形を$P_n$とし、
$P_n$に内接する円を$C_{n+1}$とする。$C_n$の半径を$r_n,C_n$の内側
で$P_n$の外側の部分の面積を$s_n$とし、$f(m)=\sum_{n=1}^{\infty}s_n$とする。以下の問いに答えよ。
(1)$r_n,s_n$の値を$\theta,n$を用いて表せ。
(2)$f(m)$の値を$\theta$を用いて表せ。
(3)極限値$\lim_{m \to \infty}f(m)$を求めよ。
ただし必要があれば$\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$を用いてよい。

2022神戸大学理系過去問
この動画を見る 

慶應義塾大(医)数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.これを解け.
$a_n=\sqrt{n^2+n+5}$
$\displaystyle \lim_{n\to \infty}(a_n-[a_n])$

慶應(医)過去問
この動画を見る 

【数学Ⅲ/微分】逆関数の微分

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
この動画を見る 

福田のおもしろ数学317〜複雑な数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle a_n=n\log n\log(n+1)\{\sin(\frac{1}{\log n})-\sin(\frac{1}{\log(n+1})\}$
$\displaystyle \lim_{n\to \infty}a_n$を求めて下さい。
この動画を見る 

福田のわかった数学〜高校3年生理系044〜極限(44)関数の連続性(1)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ $関数の連続性(1)$

$\displaystyle f(x) =\lim_{n \to \infty}\frac{x^{2n}-x^{2n-1}+ax^2+bx}{x^{2n}+1}$
が連続関数となるように$aとb$を定めよ。
この動画を見る 
PAGE TOP