福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}} 与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、\\
この試行におけるすべての根元事象は同様に確からしいとする。\\
(1)正n角形における前事象をU_nとし、その中で面積が最小の三角形ができる\\
事象をA_nとする。ただし、nはn \geqq 6を満たす自然数とする。\\
(\textrm{i})事象U_6において、事象A_6の確率は\boxed{\ \ ス\ \ }である。\\
(\textrm{ii})事象U_nにおいて、事象A_nの確率をnの式で表すと\boxed{\ \ セ\ \ }であり、\\
この確率が\frac{1}{1070}以下になる最小のnの値は\boxed{\ \ ソ\ \ }である。\\
(\textrm{iii})事象U_n \cap \bar{ A_n }において、面積が最小となる三角形ができる確率をnの式で\\
表すと\boxed{\ \ タ\ \ }である。\\
(2)1辺の長さが\sqrt2である立方体における全事象をVとすると、事象Vに含まれ\\
るすべての三角形の面積の平均値は\boxed{\ \ チ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}} 与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、\\
この試行におけるすべての根元事象は同様に確からしいとする。\\
(1)正n角形における前事象をU_nとし、その中で面積が最小の三角形ができる\\
事象をA_nとする。ただし、nはn \geqq 6を満たす自然数とする。\\
(\textrm{i})事象U_6において、事象A_6の確率は\boxed{\ \ ス\ \ }である。\\
(\textrm{ii})事象U_nにおいて、事象A_nの確率をnの式で表すと\boxed{\ \ セ\ \ }であり、\\
この確率が\frac{1}{1070}以下になる最小のnの値は\boxed{\ \ ソ\ \ }である。\\
(\textrm{iii})事象U_n \cap \bar{ A_n }において、面積が最小となる三角形ができる確率をnの式で\\
表すと\boxed{\ \ タ\ \ }である。\\
(2)1辺の長さが\sqrt2である立方体における全事象をVとすると、事象Vに含まれ\\
るすべての三角形の面積の平均値は\boxed{\ \ チ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
投稿日:2021.07.29

<関連動画>

場合の数 組み合わせ応用③【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・右のような街路で、$P$から$Q$まで行く最短経路のうち、次の場合は何通りあるか。
(1)総数
(2)$R$を通る経路
(3)$R、S$をともに通る経路
(4)×印の個所を通らない経路

・4桁の自然数nの千の位、百の位、十の位、一の位の数字を、それぞれ$a,b,c,d$とする。
次の条件を満たす$n$は全部で何個あるか。
(1)$a\gt b\gt c\gt d$
(2)$a\geqq b\gt c\gt d$
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

福田のわかった数学〜高校1年生076〜場合の数(15)道順(2)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(15) 道順(2)\hspace{100pt}\\
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。\\
(※図は動画参照)
\end{eqnarray}
この動画を見る 

この問題解けるかな?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
階乗の問題
①$4!=?$
②$4!!=?$
③$3$=?$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題065〜中央大学2019年度理工学部第3問〜反復試行と確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$ Oを原点とする平面上の動点Rが$R_0$(1, 0)から出発して、単位円の周上を1秒ごとに反時計周りに移動する。移動するときの動径ORの回転角は、確率$\frac{1}{2}$で$\frac{\pi}{6}$、確率$\frac{1}{2}$で$\frac{\pi}{3}$である。n秒後のRの位置を$R_n$とする。以下の問いに答えよ。
(1)$R_5$が(-1, 0)である確率を求めよ。
(2)$R_9$がx軸上にある確率を求めよ。
次に、$R_n$がx軸上またはy軸上にある確率を$p_n$(n≧1)とする。
(3)$p_{n+1}$を$p_n$を用いて表せ。
(4)$p_n$を求めよ。

2019中央大学理工学部過去問
この動画を見る 
PAGE TOP