問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
投稿日:2022.09.26