福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}

2022青山学院大学理工学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。\\
また、Y=\frac{X_2X_3}{X_1}とする。\hspace{150pt}\\
(1)X_1=2のとき、Yが整数となる確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ である。\hspace{47pt}\\
\\
(2)X_1=3のとき、Yが整数となる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\ である。\hspace{47pt}\\
\\
(3)X_1=4のとき、Yが整数となる確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}\ である。\hspace{39pt}\\
\\
(4)Yが整数となる確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}\ である。\hspace{101pt}
\end{eqnarray}

2022青山学院大学理工学部過去問
投稿日:2022.09.26

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 

確率 漸化式 なぜ計算ミスに気づけたか

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む

原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の\\
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、\\
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。\\
点Pの座標が(2,2)である確率は\boxed{\ \ ス\ \ }であり、Pと原点との距離が3以上である\\
確率は\boxed{\ \ セ\ \ }である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない\\
条件付確率は\boxed{\ \ ソ\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 

慶應より早稲田より青山が難しい。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
下の文字を1列に並べたとき場合の数は何通り?
(1)K,E,I,O
(2)W,A,S,E,D,A
(3)A,O,Y,A,M,A
この動画を見る 

【数A】ガチャの確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1%の確率で当たるって実際にはどのくらい当たるの考えてみよう!
この動画を見る 
PAGE TOP