【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】 - 質問解決D.B.(データベース)

【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

問題文全文(内容文):
■【大阪大学 2023】
nを2以上の自然数とする。
(1)0x1の時、次の不等式が成り立つことを示せ。
12xn(1)n[1x+11k=2n(1)k1]xn12xn+1
(2)an=k=1n(1)k1kとするとき、次の極限値を求めよ。
limn(1)nn(anlog2)
チャプター:

0:00 大阪について
0:31 (1)
5:15 (2)
10:19 今回のポイント

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【大阪大学 2023】
nを2以上の自然数とする。
(1)0x1の時、次の不等式が成り立つことを示せ。
12xn(1)n[1x+11k=2n(1)k1]xn12xn+1
(2)an=k=1n(1)k1kとするとき、次の極限値を求めよ。
limn(1)nn(anlog2)
投稿日:2024.02.26

<関連動画>

福田の数学〜京都大学2023年文系第5問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
5 整式f(x)が恒等式
f(x)+11(xy)2f(y)dy=2x2+x+53
を満たすとき、f(x)を求めよ。

2023京都大学文系過去問
この動画を見る 

#茨城大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
013x3+4xx2+1dx

出典:2020年茨城大学
この動画を見る 

#会津大学2023#定積分_9#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
0πsin3xcos2x dx

出典:2023年会津大学
この動画を見る 

#茨城大学2024#定積分_8#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
0π2cosθsin2θdθ

出典:2024年茨城大学後期
この動画を見る 

大学入試問題#909「基本に忠実に」 前橋工科大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
03(x73x3)ex44 dx

出典:2023年前橋工科大学
この動画を見る 
PAGE TOP preload imagepreload image