福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
投稿日:2025.04.15

<関連動画>

大学入試問題#52 防衛医科大学(2020) 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3=8$の虚数解の1つを$\alpha$とする。
$\alpha^4+6\alpha^3+8\alpha^2+8\alpha$の値を求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 

15東京都教員採用試験(数学:1-3 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$α、β \in \mathbb{ C }$
$α^2+αβ+β^2=0$ (α,β≠0)
$arg \frac{α}{β}$
この動画を見る 

三重大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$の2つの解を$\alpha, \beta$とする。

(1)
$\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\beta}$の値


(2)
$\alpha^{27},\beta^{27}$の値


(3)
$\alpha^n+\beta^n$の値

出典:三重大学 過去問
この動画を見る 

東京工業大学 三次方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP