約分の裏技をまとめました - 質問解決D.B.(データベース)

約分の裏技をまとめました

問題文全文(内容文):
次の数を約分せよ
(1) $\displaystyle \frac{3007}{3201}$

(2) $\displaystyle \frac{10033}{12877}$
チャプター:

00:00 はじまり

00:54 問題1

04:25 問題2

10:49 まとめ

11:32 問題と答え

単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の数を約分せよ
(1) $\displaystyle \frac{3007}{3201}$

(2) $\displaystyle \frac{10033}{12877}$
投稿日:2022.07.01

<関連動画>

福田のおもしろ数学418〜条件を満たす3つの数を割りきれるようにすることが可能か不可能かの考察

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。

$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して

$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ

$\overline{ca}$が$b$で割り切れることは可能か?
   
この動画を見る 

簡単な問題

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.

$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第2問〜整式の割り算と二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 整式$f(x)=x^4-x^2+1$ について、以下の問いに答えよ。
(1)$x^6$を$f(x)$で割った時の余りを求めよ。
(2)$x^{2021}$を$f(x)$で割った時の余りを求めよ。
(3)自然数$n$が$3$の倍数であるとき、$(x^2-1)^n-1$
が$f(x)$で割りきれることを示せ。

2021早稲田大学理工学部過去問
この動画を見る 
PAGE TOP