あけましておめでとうございます - 質問解決D.B.(データベース)

あけましておめでとうございます

問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

投稿日:2023.01.01

<関連動画>

大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$

出典:2015年群馬大学 入試問題
この動画を見る 

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ xy平面上の曲線Cを、媒介変数tを用いて次のように定める。\\
x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)\\
以下の問いに答えよ。\\
(1)区間0 \lt t \lt \frac{\pi}{6}において、\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0であることを示せ。\\
(2)曲線Cの0 \leqq t \leqq \frac{\pi}{6}の部分、x軸、直線y=\frac{1}{\sqrt3}xで囲まれた\\
図形の面積を求めよ。\\
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を\\
原点を中心として反時計回りに\frac{\pi}{3}だけ回転させた点はC上\\
にあることを示せ。\\
(4)曲線Cの概形を図示せよ。
\end{eqnarray}

2022九州大学理系過去問
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る 
PAGE TOP